
Supervised Hashing based on Energy Minimization

Zihao Hu, Xiyi Luo, Hongtao Lu∗, and Yong Yu

Department of Computer Science and Engineering, Shanghai Jiao Tong University
{zihaohu, moberq.luo, htlu}@sjtu.edu.cn, yyu@apex.sjtu.edu.cn

Abstract

Recently, supervised hashing methods have attracted
much attention since they can optimize retrieval speed and
storage cost while preserving semantic information. Be-
cause hashing codes learning is NP-hard, many methods
resort to some form of relaxation technique. But the per-
formance of these methods can easily deteriorate due to the
relaxation. Luckily, many supervised hashing formulations
can be viewed as energy functions, hence solving hashing
codes is equivalent to learning marginals in the correspond-
ing conditional random field (CRF). By minimizing the KL
divergence between a fully factorized distribution and the
Gibbs distribution of this CRF, a set of consistency equa-
tions can be obtained, but updating them in parallel may
not yield a local optimum since the variational lower bound
is not guaranteed to increase. In this paper, we use a linear
approximation of the sigmoid function to convert these con-
sistency equations to linear systems, which have a closed-
form solution. By applying this novel technique to two clas-
sical hashing formulations KSH and SPLH, we obtain two
new methods called EM (energy minimizing based)-KSH
and EM-SPLH. Experimental results on three datasets show
the superiority of our methods.

1. Introduction
Nearest neighbor search (NNS) is a well-known problem

arising in numerous fields of application for finding points
closest to a given query. Exact nearest neighbor search is
intractable in high-dimensional spaces and unnecessary in
many cases. Hence, hashing has been merited for it can
refine retrieval speed and storage cost considerably [22, 19,
17, 16, 8, 21, 14, 23, 13, 18, 7].

Studies on hashing are roughly in two streams, catego-
rized by whether the learned hash functions rely on the
training data. The early exploration of hashing focuses on
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using random projections to construct hash functions, thus
is data-independent. The most popular data-independent
method is Locality Sensitive Hashing (LSH) [2], which is
widely used until now.

Data-dependent hashing methods have attracted con-
siderable attention in recent years, since they leverage
the training data to achieve better performance. Data-
dependent hashing can be divided into two types, i.e., unsu-
pervised and supervised methods. Unsupervised techniques
learn underlying linear or non-linear local structures of the
training data. Representative methods in this fashion in-
clude iterative quantization (ITQ) [3] and locally linear
hashing (LLH) [5]. However, in many real-world scenarios,
preserving semantic information is more important. Hence,
supervised hashing methods are proposed to leverage se-
mantic tags of data points. Representatives of supervised
hashing methods include CCA-ITQ [3], kernelized super-
vised hashing (KSH) [16], two step hashing (TSH) [14],
latent factor hashing (LFH) [24], supervised discrete hash-
ing (SDH) [18] and COSDISH [7].

Although many efforts have been made on designing
new formulations and optimization procedures for super-
vised hashing, there are few works that adopt probabilistic
inference techniques. LFH [24] might be the first method
to use a generative model for supervised hashing, which as-
sumes that the pairwise similarity is generated by the in-
ner product of two corresponding binary codes. By intro-
ducing a prior on hashing codes and applying some form
of relaxation, the resulting model is easy to optimize and
can yield a satisfactory performance. Bayesian supervised
hashing (BSH) [4] adopts the mean-field approach to in-
fer latent factors and tune hyper-parameters automatically.
However, BSH models each hashing code with a multivari-
ate Gaussian distribution. When learning d-bit codes for n
data points, the space complexity is O(nd2), which is un-
bearable for real applications.

In this paper, we propose a novel technique which is also
based on probabilistic inference. But instead of modeling
the hashing code as a multivariate Gaussian random vector,
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we view each binary bit as a discrete random variable that
only takes values of 1 and −1. Therefore, finding the most
probable hashing codes is equivalent to solving marginals in
the corresponding CRF. We adopt a fully factorized mean-
field inference to obtain consistency equations, and approx-
imate these equations by linear systems instead of iterating
them, therefore, a closed-form solution can be obtained. We
use this technique to improve kernel-based supervised hash-
ing (KSH) [16] and sequential projection learning for hash-
ing (SPLH) [20], and we obtain two new hashing methods
called EM (energy minimizing based)-KSH and EM-SPLH.
Contributions of this paper are summarized as follows:

• We first view solving different supervised hashing
formulations as learning marginals in corresponding
CRFs, and provide a simple yet effective linear approx-
imation to solve them. Since many supervised hashing
loss formulations can be viewed as energy functions,
we can consider our method as a general framework
that is able to incorporate many of them.

• We propose a linear-time variant of EM-KSH to
tackle large-scale problems. Besides, we reduce the
space complexity from the original O(nd2) in BSH to
O(nd).

• We have conducted image retrieval experiments on
three real-world datasets. Results show that EM-KSH
and EM-SPLH outperform state-of-the-art methods.
Using the linear time variant of EM-KSH, we can train
64-bit hashing codes on NUS-WIDE in 20 seconds
while retaining a state-of-the-art performance.

2. Notations and Problem Definition
2.1. Notations

Lowercase and uppercase boldface letters denote vectors
and matrices, respectively. For a matrix A ∈ Rm×n , Aij
represents the element at the i-th row and j-th column in A,
and AT denotes the transpose of A. Ai· and A·j denote
column vectors formed by the i-th row and the j-th col-
umn of A, respectively. When A is a square matrix, we let
A−1 be the inverse (if exists) of A, and diag(A) be a col-
umn vector formed by diagonal elements in A. I denotes
the identity matrix of appropriate size, and 1 is a vector or
matrix with all ones of appropriate size. ‖·‖2 denotes the
spectral norm of a matrix while ‖·‖F denotes the Frobenius
norm. For a random variable b, E[b] returns its expectation.

2.2. Problem Definition

Suppose X = [X1·, · · · ,Xn·]
T ∈ Rn×p is the data ma-

trix, where Xi· is the feature of the i-th data point. In con-
ventional settings [24, 7], the semantic information is given
by a pairwise similarity matrix S ∈ {−1, 0, 1}n×n, where

1

Figure 1. The graphical model of a toy example and its different
decomposition structures. From the left to the right are the original
structure, the decomposition by element, by column and by row of
the original structure, respectively.

Sij = 1 denotes that the i-th data point is similar to the
j-th, while Sij = −1 means they are dissimilar. When
Sij = 0, we do not know whether they are similar or not.
For ease of illustration, we assume that S is fully observed,
that is, S ∈ {−1, 1}n×n, while our method can tackle the
case that partial information is missing naturally. We denote
B = [B1·,B2·, · · · ,Bn·]

T = [Bik] ∈ {−1, 1}n×d as the
learned hashing matrix, with Bi· as the d-bit hashing code
for the i-th data point. The purpose of supervised hashing
is to preserve semantic similarities in Hamming space, that
is, the Hamming distance between hashing codes of similar
data points should be small.

3. Energy Minimizing based Hashing
3.1. General Energy Minimizing Approach

Many supervised hashing loss formulations, for instance,
BRE [12], SPLH [20], KSH [16] and LFH [24] can be
viewed as exponential losses of polynomials. Inspired by
[9, 10], we view a supervised hashing learning formulation
as the corresponding densely connected CRF. If we denote
a supervised hashing loss as E(B;S), the corresponding
Gibbs distribution can be written as:

p(B|S) = 1

Z
exp{−E(B;S)}. (1)

To obtain marginal probabilities of this distribution, we
must calculate sums over exponentials of energy functions,
which is nevertheless intractable. Hence, some form of ap-
proximation must be utilized. The mean-field approxima-
tion optimizes a distribution q(B) that minimizes the KL
divergence KL(q||p) and factorizes with respect to a parti-
tion of variables in B. Intuitively, the matrix B has three
ways to factorize: by element, by row, and by column. Fig-
ure 1 demonstrates a toy graphical model and its three de-
composition structures.

Factorizing B into independent variables provides a
tractable way to infer B. Since each element is a binary ran-
dom variable, a set of closed-form updating equations can
be obtained. The drawback of this approach is that all inter-
action terms between variables are neglected, so the perfor-
mance can easily deteriorate.
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Factorizing B by row or by column is more challenge
since plenty of interaction terms have to be considered dur-
ing the optimization process. But if we can obtain the joint
distribution of variables by row or by column of B, then a
two-round message passing process could yield more pre-
cise marginals than the fully factorized mean-field infer-
ence.

Our motivation is to maintain the tractability of the fully
factorized distribution while considering interactions be-
tween rows or columns of variables in B. To achieve this
goal, we first derive consistency equations from the fully
factorized mean-field inference, then approximate a fixed
point of these equations. While solving one row or one
column of variables, we view others as constants. Solving
these equations is intractable since they contain the sigmoid
function σ(x) = 1/

(
1 + exp(−x)

)
. Therefore, we com-

pute a linear approximation of the sigmoid function on a
restricted interval and convert the original consistency equa-
tions to a set of linear systems.

To see how the sigmoid function is involved,
let us consider minimizing the KL divergence be-
tween the fully factorized distribution q(B|Φ) =∏n
i

∏d
k φ

(Bik+1)/2
ik (1− φik)(1−Bik)/2 and p(B|S) in

(1), where φik is the probability that Bik takes the value 1,
and 1− φik is the probability that Bik takes the value −1.

KL(q||p) =
n∑
i

d∑
k

φik lnφik + (1− φik) ln(1− φik)

+ Eq[E ] + lnZ.

(2)

After letting the derivative of φik be zero, we obtain

φik = σ
(
− ∂Eq[E ]

∂φik

)
. (3)

Since E is a polynomial of B and for a binary random vari-
able b which takes the value 1 with probability φ and the
value −1 with probability 1 − φ, E[b] = 1 × φ + (−1) ×
(1− φ) = 2φ− 1, (3) usually has the form of

φ = σ(A(2φ− 1) + b), (4)

where A is a real symmetric matrix of d× d and b is a real
vector of d × 1. We wish to solve φ ∈ [0, 1]d×1 approxi-
mately.

We restrict the range in which we approximate the sig-
moid function to make the approximation error small by
defining

λ = max
i∈{1,··· ,d}

( d∑
j

|Aij |+ |bi|
)
/c, (5)

where c > 0 is a constant, and solve the scaled problem

φ = σ(λ−1(A(2φ− 1) + b)). (6)

Now each term inside the sigmoid function is bounded by
an interval [−c, c]. We compute a linear approximation of
the sigmoid function: σ(x) ≈ c1x + c2 on this interval,
where c1 and c2 can be determined by minimizing

min
c1,c2

∫ c

−c
(σ(x)− c1x− c2)2dx. (7)

Each element in the sigmoid function of (6) is a linear com-
bination of φ, so approximating these elements directly
may cause considerable error. When A is invertible, we
apply a linear transformation v = λ−1A(2φ − 1), that is,
2φ − 1 = λA−1v, to make sure that each term in the sig-
moid function involves one variable in v. After this approx-
imation, (6) turns out to be linear equations of v as

(λA−1 − 2c1I)v = 2c1λ
−1b, (8)

where since c2 ≡ 0.5, it is eliminated automatically.
We mainly discuss the case that A is invertible, while

the case that A is singular can be treated similarly. In both
cases, we have to inverse (λI − 2c1A), so we use the fol-
lowing theorem to ensure its invertibility.

Theorem 1. A sufficient condition for the invertibility of
(λI− 2c1A) is that 2c1 < 1/c.

Proof. We denote the eigenvalue of A with the largest mag-
nitude as λm. According to the Gershgorin circle theorem
and λ = max

i∈{1,··· ,d}

(∑d
j |Aij |+ |bi|

)
/c, we have

|λm| ≤ max
i∈{1,··· ,d}

( d∑
j

|Aij |
)
≤ λc. (9)

If 2c1 < 1/c, the eigenvalue of 2c1A with the largest mag-
nitude is less than λ, so (λI − 2c1A) would be positive
definite, which concludes the proof.

By computing, we find that when c < 2.5997, the condi-
tion in Theorem 1 holds automatically.

According to whether b = 0, (8) has two cases:

• For b 6= 0, this problem has a closed-form solution

v = 2c1λ
−1(λA−1 − 2c1I)

−1b. (10)

• For b = 0, this linear system does not have non-zero
solution, but we can find the solution of

min
v

∥∥(λA−1 − 2c1I)v
∥∥2
2

(11)

instead. The solution of this problem is the eigenvector
associated with the smallest eigenvalue of the matrix
(λA−1 − 2c1I)

T (λA−1 − 2c1I).
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After solving v, recall that v + λ−1b , v′ ∈ [−c, c], we
first re-normalize v′ by

v′ := c

(
2
( v′ −min(v′)

max(v′)−min(v′)

)
− 1

)
, (12)

then use φ = σ(v′) to obtain the final φ.

3.2. Applications to Supervised Hashing

We use two supervised hashing formulations to illustrate
how to derive our EM-KSH and EM-SPLH.

For KSH [16], the corresponding Gibbs function is:

p(B|S) = exp
{
− 1

4

n∑
i<j

(BT
i·Bj· − dSij)2

}
. (13)

By minimizing the KL divergence between q(B|Φ) and
p(B|S), the optimal solution is given by:

φik = σ
(
−

n∑
j 6=i

d∑
k′ 6=k

(2φjk − 1)(2φjk′ − 1)(2φik′ − 1)

+

n∑
j 6=i

dSij(2φjk − 1)
)
.

(14)

Letting

Aikk′ =

n∑
j 6=i

−1[k 6=k′](2φjk − 1)(2φjk′ − 1),

bik =

n∑
j 6=i

dSij(2φjk − 1), i ∈ {1, · · · , n},
(15)

where 1[·] is the indicator function, we recognize that (14)
are actually simultaneous equations with the form of (4)
over triplets {Ai,bi,Φi·} where i ∈ {1, · · · , n}, so they
can be solved using the technique mentioned above.

Another example is SPLH [20]. Its Gibbs distribution
can be expressed as:

p(B|S) = exp
{1
2

n∑
i<j

SijB
T
i·Bj·

}
. (16)

The corresponding re-estimation equations are given by:

φik = σ
( n∑
j 6=i

Sij(2φjk − 1)
)
. (17)

Since Ak = S and bk = 0 hold for all k ∈ {1, · · · , d},
these equations can be decoupled into d identical problems
over triplets {S,0,Φ·k}. Therefore, all hashing bits will
be the same after solving these linear systems. In addition,

Φ·k is independent of S, so we can solve a fixed point in
one iteration exactly.

It is worth noting that after approximating consistency
equations of KSH, the parameter b 6= 0, while for SPLH,
b ≡ 0. Consequently, they correspond to two cases of our
linear approximation method, respectively. We shall evalu-
ate both of them in the experimental section.

3.3. Stochastic Learning

Due to the unbearable time cost and space complexity
for tackling the whole similarity matrix, we follow the same
method as LFH [24] to reduce the complexity, i.e., sampling
m columns in the original similarity matrix randomly. The
resulting sub-matrix is denoted as S ∈ {−1, 1}n×m. We
partition the learned Φ as Φ = [Φ1,Φ2]

T where Φ1 ∈
[0, 1]m×m is the hashing matrix for anteriorm points, while
Φ2 ∈ [0, 1](n−m)×m is the hashing matrix for the later (n−
m) data points. We show how to learn semantic information
in S as follows. For i ∈ {1, · · · ,m}, Ai and bi are exactly
the same as in (15). For i ∈ {m+ 1, · · · , n}, we have

Aikk′ =

m∑
j=1

−1[k 6=k′](2φjk − 1)(2φjk′ − 1),

bik =

m∑
j=1

dSij(2φik − 1), i ∈ {m+ 1, · · · , n}.
(18)

It is interesting to find out that for all i ∈ {m + 1, · · · , n},
Ai is the same matrix as A. This property can be used to
reduce the time and space complexity of EM-KSH. To see
this, we first write down corresponding linear systems:

(λiA
−1 − 2c1I)vi = 2c1λ

−1
i bi, i ∈ {m+ 1, · · · , n}.

(19)
We perform the eigen decomposition of A as A = PDP−1

to accelerate the calculation, and solve vi as

vi = 2c1P
(
λiD

−1 − 2c1I
)−1

P−1
bi

λi

= 2c1Pdiag
(
(λiD

−1 − 2c1I)
−1
)
� (P−1

bi

λi
),

(20)

where � is the Hadamard product (element-wise product)
of two matrices (vectors). Hence, we do not need to spend
O(d2(n − m)) space to store all (λiD−1 − 2c1), instead
we could complete necessary calculations at the cost of
O(d(n −m) + d2). Besides, Φi· is independent of A for
i ∈ {m + 1, · · · , n}, so we can solve Φ2 in one iteration.
Our learning process is summarized in Algorithm 1. In gen-
eral, 2 ≤ T ≤ 10 is enough to get satisfactory performance.
We set T = 3 throughout our experiments for time-saving
purposes.
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Algorithm 1: Learning procedure for EM-KSH
Input : S ∈ {−1, 1}n×m, c, d, T.
Output: Φ ∈ [0, 1]n×d, which will be rounded to

obtain a hashing matrix B ∈ {−1, 1}n×d.

Initialize the matrix Φ by randomization.
for t← 1 to T do

Construct Ai,bi according to (15),
where i ∈ {1, · · · ,m}.
Solve the resulting m linear systems using (10),
and compute Φ1.

end
Construct A,bi according to (18),
where i ∈ {m+ 1, · · · , n}.
Compute the eigendecomposition of A.
Solve the resulting n−m linear systems using (20),
and compute Φ2.
return Φ = [Φ1,Φ2]

T .

3.4. Rounding and Out-of-Sample Extension

We follow the same procedure as in BSH [4] for both
rounding and out-of-sample extension. That is, we round Φ
according to the mean value of each bit. For out-of-sample
extension, we simply learn a linear mapping W from X to
Φ by minimizing

min
W
‖Φ−XW‖2F + λh‖W‖2F , (21)

where λh is a regularization hyper-parameter. For a new
data point x, the corresponding φ is calculated as

φ = WTx. (22)

3.5. Complexity Analysis

We discuss the case that S ∈ {−1, 1}n×m is a
sub-matrix of the original similarity matrix. For i ∈
{1, · · · ,m}, we need O(m(n − 1)d2 + m(n − 1)d) =
O(mnd2) time to calculate all Ai and bi. Then it takes
O(d3) to solve an equation as in (6), hence, calculating
Φ1 costs O(mnd2 + md3). For i ∈ {m + 1, · · · , n},
O(md2 + (n − m)md) is required to obtain the common
A and all bi. Then, by using the trick in (20), we are able
to solve one problem like this in O(d2) time, and O(d3)
is needed to compute the eigendecomposition of A. Since
d� m, updating Φ2 needs O((n−m)md). Provided that
we have to compute Φ1 for T times and Φ2 in one iteration,
the total time of computing Φ is bounded by O(Tnmd2).
Since m is usually chosen as a constant like 1000 and the
factor inO(·) is usually quite small, this method is very fast
in real applications.

For the space complexity, O(m(d2 + d)) is occupied by
Ai and bi for i ∈ {1, · · · ,m}. By utilizing the trick in

(20), it only takesO((n−m)d+d2) space for learning Φ2.
Therefore, the total storage cost is O(md2 + nd). In most
cases, we have md = O(n), hence the space complexity
can be written as O(nd), which outperforms the original
O(nd2) in BSH [4].

3.6. Extensions of Other Methods

Extending our method to BRE [12] and ExpH [14] is
quite straightforward. Here we only show how to extend
our proposed technique to LFH [24]. The optimization ob-
jective of LFH is

p(B|S) =
n∏
i<j

σ(BT
i·Bj·)

1+Sij
2

(
1− σ(BT

i·Bj·)
) 1−Sij

2 , (23)

which is not a Gibbs distribution at first glance. But after
applying the local variational method in [6], the original
objective is lower bounded by

p̃(B|S) = 1

Z
exp

{ n∑
i<j

(1
2
SijB

T
i·Bj·+λ(ξij)(B

T
i·Bj·)

2
)}
,

(24)
where ξij =

√
E[BT

i·Bj·]2, and λ(ξij) = −
σ(ξij)− 1

2

2ξij
. The

resulting mean-field consistency equations are given by

φik = σ
( n∑
j 6=i

d∑
k′ 6=k

(
4λ(ξij)(2φjk − 1)(2φjk′ − 1)

(2φik′ − 1)
)
+

n∑
j 6=i

Sij(2φjk − 1)
)
.

(25)

So we can solve these consistency equations by finding a
fixed point in the same manner as EM-KSH.

Interestingly, we have found a deep connection between
KSH and LFH. Suppose that for arbitrary two codes Bi· and
Bj·, we have E[Bi·] = E[Bj·] or E[Bi·] = −E[Bj·], then
ξij = d and λ(ξij) ≈ − 1

4d . Substituting λ(ξij) ≈ − 1
4d into

(25) yields

φik = σ
(
−

n∑
j 6=i

d∑
k′ 6=k

1

d

(
(2φjk − 1)(2φjk′ − 1)

(2φik′ − 1)
)
+

n∑
j 6=i

Sij(2φjk − 1)
)
,

(26)

which is identical to (14) except for a factor of d. Conse-
quently, KSH can be viewed as a hard assignment of hash-
ing codes to −1 or 1, while LFH makes a soft assignment
based on probabilities.
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Method ESPGAME CIFAR-10
8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

CCA-ITQ 0.2751 0.2805 0.2804 0.2816 0.2163 0.2215 0.0.2254 0.2319
KSH 0.2977 0.3086 0.3194 0.3248 0.2521 0.2825 0.3210 0.3492
LFH 0.3116 0.3330 0.3546 0.3659 0.2881 0.3996 0.5216 0.6085
SDH 0.3094 0.3290 0.3312 0.3388 0.3329 0.4833 0.5397 0.5865

COSDISH 0.2977 0.3158 0.3327 0.3407 0.4898 0.5733 0.6215 0.6369
NSH 0.2946 0.3058 0.3116 0.3223 0.3907 0.4476 0.4875 0.5298
BSH 0.3314 0.3456 0.3583 0.3639 0.4132 0.4989 0.5792 0.6137

EM-KSH 0.3430 0.3602 0.3592 0.3710 0.4459 0.5344 0.5804 0.6276

Table 1. Experimental performance on ESPGAME and CIFAR-10 in terms of mAP. Best results are in bold.

Code length 8 bits 16 bits 32 bits 64 bits
mAP Time mAP Time mAP Time mAP Time

CCA-ITQ 0.2947 4.38 0.3002 4.65 0.3111 6.02 0.3152 13.76
KSH 0.3732 211.44 0.4149 732.87 0.4356 1792.90 0.4391 2931.97
LFH 0.4542 31.05 0.4854 54.50 0.5120 82.29 0.5324 138.72
SDH 0.4353 46.14 0.4630 56.59 0.4847 155.17 0.5143 649.32

COSDISH 0.4299 18.71 0.4827 28.07 0.4918 276.28 0.5231 1030.22
NSH 0.3837 17.72 0.4197 19.32 0.4438 24.51 0.4385 31.95
BSH 0.4683 15.19 0.4825 20.85 0.5076 39.17 0.5220 121.24

EM-KSH 0.4878 10.36 0.5120 10.53 0.5331 12.12 0.5434 17.52

Table 2. The mAP and the corresponding training time (in seconds) on NUS-WIDE. Best results are in bold.

4. Experiments

4.1. Datasets

We evaluate our proposed method on three im-
age datasets: NUS-WIDE1 [1], CIFAR-102 [11] and
ESPGAME3. All of them have been widely used for super-
vised hashing methods evaluation [18, 7, 4].

CIFAR-10 consists of 60,000 color images which are
manually categorized into 10 classes. Each image in this
dataset is represented by a 512-dimensional GIST feature
vector. Two images are considered to be similar if they are
of the same class, otherwise, they are treated as dissimilar.

The ESPGAME dataset contains 20,770 images with
268 keywords while the NUS-WIDE dataset includes
269,648 natural images with 81 tags. During experi-
ments, we use 512-dimensional GIST features and 500-
dimensional bag-of-words features for ESPGAME and
NUS-WIDE, respectively. For these two datasets, two im-
ages are considered as semantic neighbors if they share at
least one common tag.

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://www.cs.toronto.edu/˜kriz/cifar.html
3http://www.hunch.net/˜jl/

4.2. Experimental Settings

Following [24, 7], for all datasets, we randomly se-
lect 1000 data points as the validation set and 1000 points
as the query set. In the preprocessing phase, we perform
normalization on features to make each dimension have
zero mean and same variance. The default value of c is
2, so the linear approximation of the sigmoid function is
σ(x) ≈ 0.2109x+0.5 on [−2, 2], while the default value of
m is 1000. Since our method directly solves a fixed point
of consistency mappings, very few iterations are already
enough to obtain satisfactory results. For all experiments,
we set T = 3.

Since supervised hashing methods outperform unsuper-
vised ones in preserving semantic similarities, we simply
compare our proposed method with other state-of-the-art
supervised hashing methods, including CCA-ITQ [3], KSH
[16], LFH [24], SDH [18], COSDISH [7], NSH [15] and
BSH [4]. The code of all these methods is implemented
by corresponding authors. For all methods, we follow set-
tings the same as those suggested by these authors. All our
experiments are conducted on a workstation with 16 Intel
i7-6900K CPU cores and 64GB RAM, and all the results
are the average value of 10 random partitions.

For these three datasets, we report the compared results
in terms of Hamming ranking. For each query, all the data
points in the training set are sorted ascending according to
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the Hamming distance between their hashing codes and the
code of the query. The mean average precision (mAP) is
used to evaluate different methods.

4.3. Comparing EM-KSH with baselines

Table 1 and 2 show the mAP of our proposed EM-KSH
and other methods on these three datasets. In addition, the
training time in seconds on the NUS-WIDE dataset with
various code lengths is reported in Table 2. By compar-
ing our EM-KSH with other baselines, we discover that
for ESPGAME and NUS-WIDE, our method outperforms
other baselines in almost all cases. Especially, EM-KSH
achieves much better performance than the original KSH
for all these three datasets consistently, which justifies that
the fixed point solved by EM-KSH is quite desirable. For
CIFAR-10, as we can see, COSDISH is the most effective
hashing method. Recall that for a single-label dataset, the
equality relation over the set of labels is transitive, that is,
for three labels li, lj , lk, if li = lj and lj = lk, then li = lk.
We speculate that the error bound of the 2d-approximation
algorithm being used in COSDISH would tighten when the
transitive relation exists in the similarity matrix.

For the time complexity, the performance of our method
is even more superior. As we can see, only CCA-ITQ can be
slightly faster than EM-KSH, but our method outperforms
CCA-ITQ by a large margin. Besides, EM-KSH is orders
of magnitude faster than other state-of-the-art methods, es-
pecially for learning 64-bit hashing codes on NUS-WIDE.
In fact, the time spent for EM-KSH to learn 64-bit codes
on NUS-WIDE is less than or equal to the time that other
baselines used to learn 8-bit codes.

In summary, our EM-KSH yields the best performance
on two datasets with multiple tags and is almost as fast
as CCA-ITQ. Although COSDISH outperforms EM-KSH
on the CIFAR-10 dataset, we still argue that our method is
state-of-the-art. First, multi-label images are easier to col-
lect and have more real-world applications. Second, EM-
KSH is much faster than COSDISH, so we can train longer
hashing codes to defeat COSDISH on single-label datasets
with a reasonable time cost. In addition, our method can be
easily modified to accommodate different hashing formula-
tions, while COSDISH is less flexible.

4.4. Sensitivity to Hyper-parameters

We vary the hyper-parameter c from 0.5 to 2.5, and re-
port the mAP performance on CIFAR-10 and NUS-WIDE
in Figure 2. We find that EM-KSH is not sensitive to the
value of c and can achieve good performance consistently.

In Figure 3, we show a performance comparison of EM-
KSH and other baselines with the size of the query set q and
the number of columns in the similarity sub-matrix m take
values from 1000, 2000, 3000, 5000 and 10000 on NUS-
WIDE. In almost all cases, the performance of EM-KSH
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Figure 2. Sensitivity to hyper-parameter c.
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Figure 3. Sensitivity to hyper-parameters m and q.

is superior to other baselines.

4.5. Long Hashing Codes Learning

In many applications, space is not the primary bottle-
neck, so longer hashing codes might be required to further
boost the retrieval precision. We train 128-bit and 256-bit
codes using EM-KSH and other baselines on NUS-WIDE
and show the result in Table 3 to further demonstrate the
effectiveness of our method.

Code length 128 bits 256 bits
mAP Time mAP Time

COSDISH 0.5318 691.73 0.5405 3096.79
LFH 0.5378 71.24 0.5548 135.23
NSH 0.4415 22.82 0.4606 43.94
BSH 0.5285 508.64 OOM OOM

EM-KSH 0.5509 27.12 0.5615 55.68

Table 3. The mAP and corresponding training time in seconds on
NUS-WIDE for learning 128-bit and 256-bit codes. Best results
are in bold. OOM means out-of-memory error.

During experiments, BSH runs out of memory and ter-
minates while learning 256-bit codes, while our method can
easily learn codes up to 256 bits with a rather low time cost.
The results further indicates our improvement on the space
side is significant.

4.6. Comparing EM-SPLH with baselines

EM-KSH corresponds to the case b 6= 0 for our pro-
posed linear approximation method, so we also report the
performance of EM-SPLH corresponding to the case b = 0
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for completeness. Since there is no interaction term in the
formulation of SPLH, all bits learned by finding a fixed
point should be the same. Consequently, we evaluate our
EM-SPLH and other state-of-the-art baselines by just learn-
ing 1-bit code. For all three datasets, we randomly choose
1000 points as the training set and another 1000 as the test
set. The results are the mean of 10 independent partitions.

Method ESPGAME CIFAR-10 NUS-WIDE
LFH 0.4890 0.1619 0.3740

COSDISH 0.4773 0.1054 0.4065
NSH 0.4957 0.1714 0.4646
BSH 0.5009 0.1409 0.3893

EM-KSH 0.4953 0.1558 0.4703
EM-SPLH 0.5110 0.1573 0.5015

Table 4. The mAP performance of learning 1-bit hashing code on
three datasets. Best results are in bold.

As shown in Table 4, EM-SPLH outperforms several
state-of-the-art methods on ESPGAME and NUS-WIDE
datasets, including EM-KSH. For CIFAR-10, the perfor-
mance of our method is also competitive. In fact, for the
1-bit case, formulations of KSH and SPLH are equivalent
since (dSij−bibj)2 = −2dSijbibj+const holds for d = 1.
Besides, LFH, COSDISH, BSH and EM-KSH can all be
viewed as optimizing the formulation of KSH (COSDISH
and EM-KSH optimize the original KSH, while LFH and
BSH optimize the KSH with soft assignments). By com-
paring the results, we can find the fixed point solved by our
method is quite desirable.

5. Conclusion
In this paper, we have proposed a novel method to ap-

proximate a fixed point of consistency mappings deriving
from mean-field inference. We convert these consistency
equations to linear systems by a linear approximation of the
sigmoid function to obtain a closed-form solution. By us-
ing this technique to supervised hashing problem, we obtain
EM-KSH and EM-SPLH. Experimental results on three im-
age datasets show that our methods outperform other state-
of-the-art methods.
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