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Abstract

Among learning based hashing methods, supervised
hashing seeks compact binary representation of the training
data to preserve semantic similarities. Recent years have
witnessed various problem formulations and optimization
methods for supervised hashing. Most of them optimize a
form of loss function with a regulization term, which can
be viewed as a maximum a posterior (MAP) estimation of
the hashing codes. However, these approaches are prone
to overfitting unless hyperparameters are tuned carefully.
To address this problem, we present a novel fully Bayesian
treatment for supervised hashing problem, named Bayesian
Supervised Hashing (BSH), in which hyperparameters are
automatically tuned during optimization. Additionally, by
utilizing automatic relevance determination (ARD), we can
figure out relative discriminating ability of different hash-
ing bits and select most informative bits among them. Ex-
perimental results on three real-world image datasets with
semantic information show that BSH can achieve superior
performance over state-of-the-art methods with comparable
training time.

1. Introduction
Given a dataset, hashing methods map data points from

the original feature space into a binary hashing code space

with pairwise metric distances or semantic similarities pre-

served. Compact hashing codes can accelerate retrieval

speed on the precondition of the accuracy. Hashing meth-

ods can be roughly divided into two main categories: data-

independent methods and data-dependent methods.

The early exploration of hashing focuses on data-

independent methods. The most popular method among

them is Locality Sensitive Hashing (LSH) [4, 17, 1] which

uses random projections to generate hash functions. The-

oretically, with the increase of code length, the original
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distance is asymptotically preserved in Hamming space.

Hence, long codes are usually used to obtain preferable re-

trieval precision. However, long codes would result in low

recall rate with the usage of the hash lookup table . In prac-

tical applications, LSH utilizes multiple tables to ensure a

reasonable recall. Both long codes and multiple tables will

affect the efficiency of retrieval.

Data-dependent methods have been developed to learn

more compact hashing codes by utilizing the training data.

Due to shortcomings of data-independent methods, many

researchers have been putting considerable efforts on de-

signing data-dependent methods. Data-dependent methods

can be further divided into two categories: unsupervised

methods and supervised methods.

Unsupervised methods [19, 5, 10, 7, 20] just use the un-

labeled data to generate binary codes, aiming at preserving

the metric structure between data points. Representative

method in this fashion is ITQ [5]. ITQ performs PCA to

reduce the dimension of data points, then seeks an orthog-

onal matrix to minimize quantization loss between rotated

data points and final binary codes. Compared with data-

independent methods, unsupervised data-dependent meth-

ods need fewer bits to achieve comparable performance.

However, a variety of image searching applications pre-

fer semantically similar neighbors. This leads to the for-

mulation of supervised hashing. In contrast to unsupervised

methods in which the training data is unlabeled, supervised

hashing is designed to preserve semantic similarities by uti-

lizing labeled training data. The representatives of super-

vised hashing methods include [18, 5, 14, 21, 16, 8, 13].

Among these methods, CCA-ITQ [5] and Supervised Dis-

crete Hashing (SDH) [16] only utilize semantic labels of

individual training points. CCA-ITQ first uses CCA to find

projection directions to maximize correlations between fea-

ture and label vectors, and then applies standard ITQ to

learn a rotation matrix . The learning objective of SDH is

to generate hashing codes by minimizing linear classifica-

tion loss function. Different from these two methods, most

approaches are built upon pairwise semantic similarities.
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For instance, Kernel-based Supervised Hashing (KSH) [14]

tries to solve a relaxed optimization problem to generate

hashing codes with the pairwise similarity preserved. This

idea is also used in other supervised methods.

While most of the hashing methods use discriminative

models, latent factor models (LFH) proposes a generative

model which assumes the pairwise semantic similarity is

generated from two corresponding latent factors. By intro-

ducing some prior, the MAP estimation of latent factors is

tractable. Latent factors are then rounded to acquire the final

hashing codes. By introducing the generative model, LFH

has strong power to infer underlying latent structures of se-

mantic similarities and hence achieves favorable results.

However, providing a MAP estimation results in a prac-

tical challenge of choosing hyperparameters. Commonly

used methods for selecting hyperparameters include grid

search and random search on the validation set, which are

inaccurate and time-consuming. The Bayesian approach

can address this issue by tuning hyperparameters automati-

cally during the optimization process . Hence, we propose a

fully Bayesian probabilistic treatment, called Bayesian Su-

pervised Hashing (BSH). The main contributions of this pa-

per are outlined as follows:

1. We propose a novel supervised hashing method by uti-

lizing the fully Bayesian treatment. Based on the vari-

ational inference, underlying latent factors can be in-

ferred elegantly from semantic information while hy-

perparameters can be determined automatically.

2. During the learning process, automatic relevance de-

termination (ARD) prior can determine the relative im-

portance of different hashing bits. Thus, we can ob-

tain shorter but more informative hashing bits based on

learned longer codes without retraining, which makes

BSH more flexible for real applications.

3. The proposed BSH is evaluated on three real-world

datasets with semantic tags. Experimental results show

that BSH outperforms other state-of-the-art methods.

To tackle large-scale data, a linear-time variant is pro-

posed. By the variant, training 64-bit hashing codes on

the NUS-WIDE dataset costs less than 3 minutes.

The remainder of the paper is organized as follows: In

Section 2 we introduce the notation used in this paper and

review LFH briefly. Section 3 demonstrates the detail of

our BSH model. Experimental results are presented in Sec-

tion 4. Finally, we conclude the paper in Section 5.

2. Related work
2.1. Notation

Throughout this paper, vectors and matrices are denoted

by boldface lower-case letters and boldface upper-case let-

ters, respectively. Given a vector x = (x1, · · · , xn)
T ∈ R

n,

let diag(x) be an n × n diagonal matrix with the i-th diag-

onal element as xi. For a matrix A = [aij ] ∈ R
m×n , aij

represents the element at the i-th row and j-th column in A,

and AT denotes the transpose of A. Ai· and A·j denote

column vectors formed by the i-th row and the j-th column

of A, respectively. When A is square, we let A−1 be the

inverse (if exist) of A. ‖·‖F denotes the Frobenius norm of

a matrix. I denotes the identity matrix of appropriate size.

For probability distributions, N (x|μ,Σ) denotes the mul-

tivariate normal distribution over a random vector x with

mean vector μ and covariance matrix Σ, and G(τ |α, β) de-

notes the Gamma distribution over a random variable τ gov-

erned by parameters α and β.

2.2. Problem definition

Suppose we have n points {xi ∈ R
d}ni=1 as the train-

ing data, where xi is the i-th feature vector. These feature

vectors can be collectively written in matrix form as X =
[x1, · · · ,xn]

T ∈ R
n×d. In customary settings for super-

vised hashing [12, 21], the supervised information is given

in terms of a semantic similarity matrix S ∈ {0, 1}n×n,

where sij = 1 means that point i and point j are se-

mantically similar, while sij = 0 means that point i and

point j are semantically dissimilar. In this paper, we as-

sume that S is fully observed without missing entries. This

assumption is reasonable because in most cases we can

get the semantic similarity for arbitrary two points. The

goal of supervised hashing is to learn a binary code matrix

B = [b1,b2, · · · ,bn]
T = [bij ] ∈ {−1, 1}n×q , where bi

denotes the learned q-bit binary code for the i-th training

point. Additionally, the semantic similarity in S should be

preserved by the binary codes, in particular, if sij = 1, the

Hamming distance between bi and bj should be low.

2.3. Brief review of LFH

Here we first briefly introduce the latent factor models

proposed in [21]. Recall that minimizing the Hamming

distance of two binary codes is equivalent to minimizing

the inner product of them [14]. Hence, LFH assumes that

the observed pairwise similarity is generated by the inner

product of two corresponding hashing codes, the likelihood

is defined as

p(sij |B) =

{
σ( 12b

T
i bj), sij = 1

1− σ( 12b
T
i bj), sij = 0

, (1)

where bi and bj are binary codes of xi and xj respectively

while σ denotes the sigmoid function.

The likelihood of the observed similarity matrix S can

be written as

p(S|B) =

n∏
i=1

n∏
j=1

p(sij |B). (2)
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With some proper prior p(B), the posterior of B can be

computed as follows:

p(B|S) ∝ p(S|B)p(B). (3)

Direct MAP estimation of B is intractable [19], therefore,

B is computed through two stages. In the first stage, B is

relaxed to be a matrix U = [uij ] ∈ R
n×q and the optimal

U is learned. The i-th row of U is called the i-th latent

factor. Then in the second stage, U is rounded to acquire

the binary code matrix B.

During the learning process, each row of U is optimized

at a time with other rows fixed. For a certain row, a lower

bound is constructed by the second order Taylor expan-

sion of log posterior L = log p(U|S), and then Newton’s

method is utilized to update the latent factor of the row.

3. Bayesian supervised hashing
3.1. Model formulation

Our proposed method adopts similar likelihood as in

LFH [21] with slight modification:

p(sij |U) =

{
σ(UT

i·Uj·), sij = 1

1− σ(UT
i·Uj·), sij = 0

. (4)

The prior over latent factor matrix U takes the form

p(U|γ) =
q∏

i=1

N (U·i|0, γ−1
i I) =

n∏
i=1

N (Ui·|0,Γ−1) (5)

where Γ = diag(γ) ∈ R
q×q is a diagonal matrix with the

i-th diagonal element as γi. Instead of a single shared hy-

perparameter, we introduce a separate hyperparameter γi
for each U·i. This formulation therefore is the analogue

of automatic relevance determination (ARD) successfully

utilized for sparse Bayesian learning. During inference, if

some hyperparameter γi assumes large value, then the pos-

terior distribution over U·i will be concentrated at 0, which

denotes that the i-th hashing bit is relatively inessential.

Conversely, small value of a hyperparameter is a clear proof

of its discrimination.

To complete the fully Bayesian treatment, we consider a

conjugate hyperprior over γ given by the Gamma distribu-

tion

p(γ|a,b) =
q∏

k=1

G(γk|ak, bk) (6)

governed by constant vectors a = [a1, a2, · · · , aq]T and

b = [b1, b2, · · · , bq]T .

The joint distribution, therefore, is expressed as

p(S,U,γ) = p(S|U)p(U|γ)p(γ|a,b). (7)

The corresponding graphical model is shown in Figure 1(a).

sij

U

γk

ak bk

n× n

q

(a)

sij

Vj· Ui·

γk

ak bk

n

n

q

(b)

Figure 1. Probabilistic graphical models for the joint distribution

before and after introducing V.

3.2. Bayesian inference

Exact Bayesian inference for all unknowns U and γ us-

ing the joint distribution in Equation (7) is intractable, since

the marginal likelihood p(S) cannot be computed analyti-

cally. Therefore, approximation methods is utilized. Note

that the form of likelihood function in Equation (4) is simi-

lar to that of logistic regression:

p(y|w) =

{
σ(wTx), y = 1

1− σ(wTx), y = 0
. (8)

Hence, we can consider using similar treatment as for

Bayesian logistic regression. The sigmoid function has no

conjugate prior but has a tight bound [2]

σ(x) ≥ σ(ξ) exp{(x− ξ)/2 + λ(ξ)(x2 − ξ2)}, (9)

where ξ is the variational parameter and

λ(ξ) = − 1

4ξ
tanh

(
ξ

2

)
. (10)

Adopting this bound, the posterior over w will be a Gaus-

sian. However, in Equation (4), Ui· and Uj· are both la-

tent variables, so the posterior over Ui· will be a quartic

exponential distribution considering sii, which is hard to

marginalize.

The authors of [15] show that shorter and more accurate

hashing codes can be acquired by introducing asymmetry

carefully on the formulation of supervised hashing. Inspired

by this, we assume that the similarity matrix S is generated

from two different matrices U,V ∈ R
n×q

p(sij |U) =

{
σ(UT

i·Vj·), sij = 1

1− σ(UT
i·Vj·), sij = 0

. (11)

V is introduced to break the symmery in Equation (4) and

we do not place prior on V. This formulation also results in
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that the posterior over Ui· becomes a Gaussian. Figure 1(b)

shows the graphical model after introducing V.

At the beginning of an iteration, we assume that Vi· has

the same distribution as Ui· to preserve a similar structure

as in Equation (4). Since the distribution over Ui· is a Gaus-

sian, we update mean vector and covariance matrix of Vi·

E[Vi·] = E[Ui·], (12)

D[Vi·] = D[Ui·]. (13)

During the optimization process, we update U and γ with

the distribution of V fixed. Introducing V may break the in-

tegrity of the Bayesian approach, but the experimental per-

formance is still satisfactable as we shall see later.

After replacing the likelihood (4) with (11), we can adopt

a variational inference to work out this problem, which is

based on maximizing a lower bound L(q) on the marginal

data log-likelihood

log p(S) = log

∫∫
p(S|U)p(U|γ)p(γ)dUdγ

≥ L(q),
(14)

where

L(q) =
∫∫

q(U,γ) log
p(S|U)p(U|γ)p(γ)

q(U,γ)
dUdγ (15)

and q(U,γ) is an approximate posterior distribution. We

assume q(U,γ) has the following factorized form:

q(U,γ) =

n∏
i=1

q(Ui·)
q∏

k=1

q(γk). (16)

Applying the bound in Equations (9) and (10) to Equa-

tion (11), the likelihood for sij is lower-bounded by

p(sij |U) = (σ(θij))
sij (1− σ(θij))

1−sij

= σ(−θij)esijθij

≥ exp{(sij − 1

2
)θij + λ(ξij)θ

2
ij

+ log σ(ξij)− 1

2
ξij − λ(ξij)ξ

2
ij},

(17)

where θij = UT
i·Vj·. Hence, the bound on p(S|U) is

p(S|U) ≥ h(U, ξ)

=

n∏
i=1

n∏
j=1

exp{(sij − 1

2
)θij + λ(ξij)θ

2
ij

+ log σ(ξij)− 1

2
ξij − λ(ξij)ξ

2
ij},

(18)

where ξ denotes the set {ξij} of variational parameters.

This results in a new lower bound

L̃(q, ξ) =

∫∫
q(U,γ) log

h(U, ξ)p(U|γ)p(γ)
q(U,γ)

dUdγ.

(19)

Since log p(S) ≥ L(q) ≥ L̃(q, ξ) always holds, we can

optimize the lower bound L̃(q, ξ) with respect to q(U,γ)
and ξ to maximize log p(S).

Following standard variational treatment [2], the approx-

imate posterior for U is given by

log q(U) = log h(U, ξ) + Eγ [log p(U|γ)] + const

=

n∑
i=1

logN (Ui·|μ�
i ,Σ

�
i ),

(20)

where

μ�
i = Σ�

i

n∑
j=1

E[Vj·](sij − 1

2
), (21)

Σ�
i =

⎧⎨⎩E[Γ]− 2

n∑
j=1

λ(ξij)E[Vj·VT
j·]

⎫⎬⎭
−1

. (22)

To find the local variational parameter ξij that maximizes

L̃(q, ξ), its derivative with respect to ξij is set to zero, and

we obtain the re-estimation equation

(ξ�ij)
2 = E[UT

i·Ui·]E[VT
j·Vj·]. (23)

Similarly, the optimal solution for the variational poste-

rior q�(γ) is obtained from

log q(γ) = EU[log p(U|γ)] + log p(γ) + const

=

q∑
k=1

log G(γk|a�k, b�k),
(24)

with parameters

a�k = ak +
n

2
, (25)

b�k = bk +
1

2
E[UT

·kU·k]. (26)

The required moments are given by

E[Γ] = diag

(
a�1
b�1

,
a�2
b�2

, · · · , a
�
q

b�q

)
, (27)

E[UT
·kU·k] =

n∑
i=1

(
(μ�

i )
2
k + (Σ�

i )kk
)
. (28)

Algorithm 1 shows the pseudocode of the learning process.

3.3. Rounding

After the optimal U is learned, we can obtain the final bi-

nary codes using some rounding techniques. Here we sim-

ply round U according to the mean value of each column

bij =

{
1, uij > mean(U·j)
−1, otherwise

. (29)

4324



Algorithm 1: Variational Bayesian hashing learning

Input : X ∈ R
n×d,S ∈ {0, 1}n×n, q, τ ∈ N

+.
Output: U ∈ R

n×q , which will be rounded to obtain

the binary code matrix B ∈ {0, 1}n×q .

Sample mean μi ∼ N (0, I) , i = 1, 2, · · · , n.

Set covariance matrix Σi = I, i = 1, 2, · · · , n.

Set variational parameters ξij = 0.

Set ak = bk = 2× 10−3, k = 1, · · · , q.

for t← 1 to τ do
Update V by Equations (12) and (13).

Update U by Equations (21) and (22).

Update all the ξij and λ(ξij) by (23) and (10).

Update hyperparameters a and b according to

Equations (25) and (26).
end
return U = [μ�

1,μ
�
2, · · · ,μ�

n]
T .

3.4. Out-of-sample extension

The procedure described in Section 3.2 creates hashing

codes only for the training samples. For query points, we

construct hashing codes using linear regression for simplic-

ity. To achieve this, we seek a linear mapping W ∈ R
d×q to

transform data matrix X into U. The squared loss function

with regularization term is

L = ‖U−XW‖2F + λ‖W‖2F , (30)

and W has closed form optimal solution as

W = (XTX+ λI)−1XTU. (31)

3.5. Stochastic Learning

It is obvious that both time complexity and storage con-

sumption are O(n2) if all the supervised information in

S is used for training, which is impracticable for large-

scale data. Hence, we randomly sample m columns in S
to form semantic information matrix S̃ for training, that

is, S̃ = [S·i1 , · · · ,S·im ]. Compared to learning from the

whole S, we only need to change the index set of j from

{1, · · · , n} to I = {i1, · · · , im}. For instance, Equations

(21) and (22) become

μ�
i = Σ�

i

∑
j∈I

E[Vj·](sij − 1

2
), (32)

Σ�
i =

⎧⎨⎩E[Γ]− 2
∑
j∈I

λ(ξij)E[Vj·VT
j·]

⎫⎬⎭
−1

. (33)

3.6. Complexity analysis

For stochastic learning, V ∈ R
m×q . At the beginning

of each iteration, we update the sufficient statistic of V at

the cost of O(mq +mq2). Then it takes O(mq2 + q3) and

O(mq + q2) to compute the covariance matrix and mean

vector of Ui·, respectively. Hence, the total time of updat-

ing U isO((mq+ q2 +mq2 + q3)n). Re-estimating all the

variational parameters ξij and λ(ξij) costsO(mnq2+mn)
time. For hyperparameters a and b, we can update them at

the cost of O(q + qn). Thus, the total time of an iteration

is O((2mq2 + q3)n), which is linear to n with the typical

assumption n � max{m, q}. However, if we choose the

whole S for learning, the time cost of an iteration will be

O(n2q2), which is unacceptable when n grows large.

Besides that, the time for rounding is O(nq) and the

time to compute W for out-of-sample extension is O(nqd+
nd2 + d3). With predetermined W, the out-of-sample ex-

tension for a query can be achieved in O(qd).
For storage cost, the mean vectors and covariance ma-

trices of U,V require O((m + n)(q + q2)) in total, while

variational parameters ξij and hyperparameters a,b occupy

O(mn) and O(q), respectively. Therefore, the total storage

cost is O((q2 +m)n), which is also linear to n.

Consequently, since q is usually very small, e.g. less than

64 and m is typically set as 1000, we can say that both time

complexity and storage cost of our proposed method are lin-

ear to the number of training samples, which make BSH

easily scalable to very large datasets.

4. Experiment
4.1. Datasets

Three image datasets with semantic tags are used to eval-

uate our proposed method and other baselines. They are

IAPRTC121 [6], ESPGAME2, and NUS-WIDE3 [3]. All of

them have been widely used for supervised hashing meth-

ods evaluation [9, 11, 13].

The IAPRTC12 benchmark contains 19627 natural im-

ages with 291 tags while the ESPGAME dataset consists

of 20770 images and 268 keywords. Each image may have

multiple tags (keywords). Each image in both datasets is

represented by a 512-dimensional GIST feature vector.

The NUS-WIDE dataset includes 269648 images col-

lected from Flickr with 81 tags. We use 500 dimensional

bag-of-words vectors for the experiments. It is worth noting

that maintainers of NUS-WIDE have released tags crawled

from websites with simple processing and ground truth an-

notated manually. In the following sections we use NUS-

WIDE-GND and NUS-WIDE-TAG to denote the feature

vectors of NUS-WIDE with ground truth and tags, respec-

tively. NUS-WIDE-GND and NUS-WIDE-TAG associate

each sample with 1.87 and 0.86 tags on average, respec-

tively. Therefore, learning semantic information from NUS-

1http://www.imageclef.org/photodata
2http://www.hunch.net/ jl/
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Method ESPGAME IAPRTC12

8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

CCA-ITQ 0.2763 0.2809 0.2787 0.2811 0.3730 0.3756 0.3771 0.3804

LFH 0.3212 0.3356 0.3584 0.3611 0.4175 0.4401 0.4705 0.4658

SDH 0.2388 0.2422 0.2416 0.2546 0.3075 0.3158 0.3158 0.3344

COSDISH 0.2970 0.3149 0.3318 0.3458 0.3995 0.4168 0.4495 0.4649

NSH 0.2951 0.3013 0.3088 0.3134 0.3992 0.4144 0.4183 0.4253

BSH 0.3349 0.3472 0.3593 0.3684 0.4451 0.4612 0.4784 0.4889

Table 1. Experimental performance on ESPGAME and IAPRTC12 datasets in terms of mAP. Best results are in bold.

Method NUS-WIDE-GND NUS-WIDE-TAG

8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

CCA-ITQ 0.2902 0.3023 0.3052 0.3163 0.0626 0.0665 0.0671 0.0678

LFH 0.4369 0.4745 0.5110 0.5359 0.0437 0.1241 0.1779 0.2038

SDH 0.2138 0.2161 0.2137 0.2143 0.0401 0.0406 0.0405 0.0406

COSDISH 0.4376 0.4774 0.5030 0.5189 0.1041 0.1412 0.1593 0.1848

NSH 0.3287 0.3407 0.3436 0.3508 0.0651 0.0686 0.0736 0.0746

BSH 0.4751 0.4835 0.5146 0.5256 0.1635 0.1868 0.1955 0.2072

Table 2. Experimental performance on the NUS-WIDE dataset in terms of mAP. Best results are in bold.

WIDE-TAG is more challenging. Both NUS-WIDE-GND

and NUS-WIDE-TAG are evaluated in our experiments.

For these three datasets, two images are considered se-

mantically similar if they share at least one common tag,

otherwise, they are treated semantically dissimilar.

4.2. Experimental settings

As in [21, 8], for all datasets we randomly choose 1000
samples as the query set, with rest points as the training

set. Note that our method does not need to set up a val-

idation set since hyperparameters for the training set can

be automatically determined during the learning phase. For

out-of-sample extension, we simply set the hyperparame-

ter λ according to [21]. In the preprocessing phase, we

perform normalization on features to make each dimension

have zero mean and equal variance. All our experiments are

conducted on a workstation with 24 Intel Xeon CPU cores

and 48 GB RAM, and all the results are the average value

of 10 independent partitions.

Since existing studies [21, 13] have shown that su-

pervised methods outperform unsupervised approaches, we

only compare our method with several representative super-

vised hashing methods, including CCA-ITQ [5], LFH [21],

SDH [16], COSDISH [8] and NSH [13]. All the baselines

are implemented by the source code provided by the cor-

responding authors. All the hyperparameters and initializa-

tion strategies are the same as those suggested by the au-

thors of these methods. For our method, we set τ = 2 and

m = 1000 in all experiments.

4.3. Hamming ranking performance

We perform Hamming ranking utilizing the generated

binary codes on ESPGAME, IAPRTC12 and NUS-WIDE

datasets. For each query, all the points in the training set are

ranked according to the Hamming distance between their

binary codes and the query’s. The mean average precision

(mAP) is reported to evaluate the performance of different

supervised hashing methods.

Tables 1 and 2 show the mAP of our method and other

baselines over these three datasets. By comparing BSH with

CCA-ITQ, LFH, SDH, COSDISH and NSH, we can find

that BSH outperforms other baselines in most cases. This

is due to that other methods can be viewed as a MAP esti-

mation. Their manually tuned hyperparameters are strongly

depended on the validation set, and hence may be unsuitable

for the test set. Our method, however, can tune hyperparam-

eters automatically simply by using the training set. There-

fore, BSH has better generalization ability. Additionally,

we can think the code length q as the hyperparameter con-

trolling the model complexity of a hashing method. With

small q (≤ 32), other methods are not adapted to the rigid

model and give very poor results. BSH, however, still yields

desirable results by tuning the model complexity automati-

cally. For instance, by using 8 bits, BSH can yield compara-

ble performance with other baselines using 16 bits. Recall

that short codes allow for very fast Hamming distance cal-

culations. More importantly, if we would like to store the

database in a hash table allowing immediate lookup, the size

of the hash table is exponential in the code length. Thus it

limits the length of binary codes to at most 64 bits, so the
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retrieval performance of short codes is crucial in practical

big-data applications.

It is also worth noting that for noisy and sparsely tagged

datasets such as NUS-WIDE-TAG (0.86 tags per sample),

pairwise similarity is rare. The Bayesian approach, in-

stead of using point estimation, averages multiple models

with respect to the posterior distribution learned from data,

and hence can obtain reasonable performance with small

amount of pairwise similarities. In summary, BSH can

achieve better accuracy than state-of-the-art methods and is

robust to noise.

Figure 3 shows some retrieval results on the NUS-WIDE

dataset. This dataset is obviously challenging but the major-

ity of retrieved images seem to be semantically relevant.

4.4. Computational cost

Table 3 shows the training time in seconds on NUS-

WIDE-GND with various code lengths utilizing BSH and

other baselines. We can see that, all these methods can han-

dle the whole training set of NUS-WIDE (≈270K samples).

Among them, only CCA-ITQ is faster than our method.

However, as shown in Tables 1 and 2, BSH outperforms

CCA-ITQ by a very large margin. Considering the retrieval

precision and the training time complexity, BSH is the most

suitable method for supervised hashing.

Method 8 bits 16 bits 32 bits 64 bits

CCA-ITQ 8.299 10.930 16.411 29.563

LFH 25.828 34.557 51.934 89.469

SDH 72.380 114.516 87.152 170.817

COSDISH 26.195 57.287 172.352 621.564

NSH 52.224 60.235 76.648 106.320

BSH 12.811 17.829 40.062 140.348

Table 3. Training time on NUS-WIDE-GND with various number

of bits in seconds.

4.5. Hashing bits selection

By utilizing ARD in Equation (5), we can determine the

relative discriminating ability of each learned hashing bit.

To validate this argument, we learn a 64-bit length hash

function and simply select k-bit codes according to the in-

dexes of the k smallest ARD hyperparameters in γ. The

mAP of this method is compared with the mAP of the k-

bit binary codes directly learning using BSH. We choose

k = 4, 8, · · · , 64 in actual experiments.

As shown in Figure 2, we can see that the mAP curve

of selected bits (the blue curve) is smooth, concave and

rather close to the red curve on three datasets consistently.

The concavity of the blue curve illustrates that the hashing

bits being selected earlier indeed are more discriminating.

And empirically, selecting 32-bit codes from 64-bit learned
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Figure 2. The red curve denotes the mAP of the k-bit hashing

codes learned directly using BSH, while the blue curve denotes

the mAP of k-bit hashing codes selected from already learned 64
bits according to ARD. k = 4, 8, · · · , 64.

hashing codes results in 1% declination of mAP. Due to the

scalability of BSH as shown in Section 4.4, we can learn

longer hashing codes, and retain shorter but more discrimi-

nating codes for long term storage, which makes BSH more

flexible for real applications.

5. Conclusion
In this paper we have proposed a novel supervised hash-

ing method called BSH. By adopting a fully Bayesian treat-

ment based on the variational inference, hyperparameters

can be automatically tuned simply using the training data.

By adopting a powerful Bayesian sparse learning tool called

ARD, we can determine the relative discriminating abil-

ity of different bits, and select the most informative bits

among them, which makes our method flexible for real ap-

plications. Experiments on several image datasets show that

BSH outperforms other state-of-the-art methods.
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