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Abstract

In this report, we propose a technique to approximate a fixed point of consistency mappings deriving
from mean field inference. We convert these equations to linear systems by using a linear approximation to
sigmoid function, then obtain a closed-form solution. This idea may also be used to solve an approximate
solution for other energy functionals, like the Bethe free energy.

Technical Details

Let us consider a Gibbs distribution about x € {—1,1}"*!

1
p(x) = — exp{~E(x)}, (1)
and its fully factorized mean field distribution
a(x|9) = [L o 21— 92 @)

K2

The KL-divergence between ¢ and p is

KL(qllp) =Y ¢iln¢; + (1 — ¢:) In(1 — ¢;)
+ ]E;[é'] +InZ.

After letting the derivative of ¢; be zero, we obtain
OB, [€]
i
For a binary random variable x which takes the value 1 with probability ¢ and the value —1 with probability
1—¢,E[z] =1x ¢+ (—1) x (1 —¢) = 2¢ — 1. Since € is a polynomial of x, Equation 4 usually has the form of
¢ =0(A(2¢—1)+Db), (5)

where A is a real symmetric matrix of n x n and b is a real vector. In addition, we wish to solve ¢ € [0,1]"*!
approximately.
We define A = max (37 |Aij| + |bs])/c, i =1,--+ ,n, and solve the scaled problem

¢ =o(

)- (4)

¢ =0\ (A(2¢ — 1) +b)) (6)

to ensure that each term inside the sigmoid is bounded by an interval [—c, ¢], we compute a linear approximation
for the sigmoid function: o(z) = ¢’z + ¢”, where ¢’ and ¢’ can be determined by minimizing the squared loss:

C
min/ (o(z) — 'z —")?da. (7)
ciez J_

Since each term inside the sigmoid function in Equation 6 is a linear combination of ¢, approximating these terms
directly may cause considerable error. When A is invertible, we apply a linear transformation v = A"1A(2¢—1),
that is, 2¢p — 1 = AA~'v, to make sure that each term inside the sigmoid function involves one variable in v.
After the approximation, Equation 6 turns out to be linear equations of v as

(AT —2¢T)v = 2¢ 17 'b, (8)



where since ¢/ = 0.5, it is eliminated automatically. When A is singular, we approximate (6) directly, and

obtain
(AL —2cA)(2¢ — 1) = 2¢'b. (9)

We mainly discuss the case that A is invertible, while the case that A is singular can be solved similarly. In
both cases, we have to inverse (AI — 2¢’A), so we use the following theorem to ensure its invertibility.

Theorem 1. A sufficient condition for the invertibility of (A\I — 2¢'A) is that 2¢' < 1/c.

Proof. We denote the eigenvalue of A with the largest magnitude as \,,. According to the Gershgorin circle
theorem, recall that A = max(3_7 [Ay] + |bi]) /e, @ € {1,---,n}, we have

M| < max(D " |Ay]) < Ae, i€ {1, ,n}. (10)
J

If 2¢' < 1/e, the eigenvalue of 2¢’ A with the largest magnitude is less than A, then (A\I —2¢’A) would be positive
definite, which concludes the proof. O

Since ¢’ is determined by ¢, we can figure out that when ¢ < 2.5997, the condition in Theorem 1 holds
automatically.
Now according to whether b = 0, (8) has two cases:

e For b # 0, this problem has a closed-form solution
v=2/A"TT(AAT = 2¢T) . (11)
e For b = 0, this linear system does not have non-zero solution, and we find the solution of
min [(AAT = 2C/I)V||; (12)

instead. The solution of the problem is the eigenvector associated with the smallest eigenvalue of the
matrix (AA~! — 2¢T)T(AA~L — 2¢T).

After solving v, reminding that v + A\"'b £ v/ € [—¢, ¢], we first re-normalize v/ by

v/ — min(v’)

v = c(2(

then use ¢ = o(v’) to obtain the final ¢.

Actually, we can reduce the approximation error by scaling the original problem with A = max(3"7 [Ay])/c, i =
1,--+,n. Now since each term inside the sigmoid is bounded by an interval [b; — ¢, b; + ¢|, we apply a linear
approximation: o(z) =~ ¢;x + d;, where ¢; and d; is determined by

o)1) (13)

max(v’) — min(

bi+c
min/ (o(x) — cix — d;)?de, (14)
cindi Jp, —c
We denote C as a diagonal matrix with the i-th diagonal element as c;, the largest one in ¢y, --- , ¢, as ¢, and

d as a column vector formed by d;.
Using the approximation, Equation 6 is converted to be linear equations about v

(M —2C)v=2\"'Cb+2d -1, (15)

which can be solved similarly as before.
We use the following theorem to guarantee the invertibility of (AI — 2CA).

Theorem 2. A sufficient condition for the invertibility of (\I — 2CA) is that 2|c| < 1/ec.

Proof. We denote the eigenvalue of CA with the largest magnitude as A\¢,. According to the Gershgorin circle
theorem and A\ = max(}_7 [4;5])/c, i€ {1,---,n}, we have

n n
Aol < max(D " fej Aijl) < fem| max(D [Ai))
J J
< AMemle, i€ {1,--- ,n}.

(16)

If 2|ci| < 1/c, the eigenvalue of 2CA with the largest magnitude is less than A, then (AI — 2CA) would be
positive definite, which concludes the proof. O



Actually, we can prove that |c,,| < ¢ always holds by showing that ¢; in Equation 14 achieves maximum
when b; = 0. Therefore, the condition in Theorem 1 is also enough. We show the proof as follows.
After taking partial derivatives w.r.t ¢; and d; in Equation 14 and eliminating d;, we reach

ci o e(In(1 + € F¢) 4+ In(1 4 €% 7)) + Lig(—eb ) — Lig(—e% ), (17)
where Lig(z) is the polylogarithm function. Its derivative with respect to b; is
f(b;) = co(b; + ¢) + co(b; — ¢) +In(1 + =€) — In(1 + ¥ ), (18)

We prove f(b;) is negative in (0, 00) and positive in (—o0,0), so ¢; reaches maximum iff b; = 0.
First, we derive f(b;)’s derivative

(b)) =0(bi+c)(c—1—colb+¢c))+a(b; —c)(c+1—co(b; —c)). (19)

It seems intractable to solve the zero set of the derivative, so we have to bypass the problem. Noticing that
f/(b;) is a quadratic function of both o(b; +¢) and o (b; — ¢), we convert the zero set of f’(b;) to the intersections
of two curves

f'(b) =x(c—1—cx) +ylc+1—cy) £ g(z,y) =0 (20)

and

{:c =o(b; +¢) (21)

y=o(b;—c)

The plot of g(z,y) = 0 is, obviously, a circle. Although the second curve seems complex, we can eliminate the
parameter b; and obtain
z(l—y)=e*(l—-z)y, 0<z<1,0<y<l, (22)

which is actually part of a hyperbola after inspecting its determinant.
Therefore, solving f'(b) = 0 is equivalent to finding the intersections of

— 2
flo g

L 0<z<1,0<y<L. 23
21— y) = (1 - a)y y (23)

We can verify that the line x + y = 1 is the common symmetry axis of both curves, so we can just discuss the

intersections of two curves below the line and double the result. These two curves intersect x4y = 1 with points
(c—1+\/ﬁ c+1—m)
2c 2c

and (o(c),o(—c)), respectively. We can further find out that implicit relations of two

curves can be converted to functions h (z) and ho(z) in intervals [0, 25X+ and [0, o(c)], respectively. The
point (0, 0) (corresponds to the case that b — —o0) can be easily verified to be an intersection point of two curves.
We use the Bolzano’s theorem to prove that there is an intersection point in the interval (0, % VCCzH] We shall

show that hy(0) = 15 < hy(0) = e72¢ and hy (L) = HL=VeEEL 5 ) (0(c)) = o(—c) > ho(HELEH)

hold for Ve > 0 by converting these inequalities to equivalent but simpler propositions.

) 1—c c+1—+vc2+1
~2c

e e 50 > o(—c)
e (1+c¢)>(1—c) Setl+VE+1<14e
S(l+e)>e (1 —c) st —c)>c2+1
se*(c—1)+(c+1) > 0. e —2ce —1> 0.

We can easily verify that e2¢(c — 1) + (c+ 1) > 0 and €2¢ — 2ce® — 1 > 0 hold for Ve > 0. Since h1(0) = ho(0)
and h}(0) < hy(0), we can say there exists € > 0 to make hi(e) < ha(e). Then hl(%) > hg(%f“)
yields that hi(z) = ho(z) has a root in the interval (e, %) We denote the root as t.

These two curves possess at least four intersection points due to the symmetry, but a circle can intersect a
hyperbola with at most four points, so the number of intersections is exactly four.

Now, we can reveal the monotonicity of f(b;) by inspecting relative positions of two curves. Recall that

f'(b)=xz(c—1—-cx)+ylc+1—cy). (24)
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Figure 1: The plot of f(b;) and the intersections of two curves when ¢ = 2.

If a point which lies on the hyperbola is inside the circle, we have f'(b;) > 0, and vice versa. We draw plots
of f(b;) and other two curves for the case ¢ = 2 in Figure 1. Since in the interval (0,t), h1(z) < ho(x) and in
(¢, %{m], hi(x) > ha(x), we know that f(b;) increases in (—oo,0~1(t) —¢) and (¢~1(1 —¢t) + ¢, 00), while
decreases in (07 1(t) —c,071(1 —t) + ¢) using the relation that x = o(b; + ¢). Combining the monotonicity with
facts that limp, 100 f(b;) = 0 and f(0) = 0 concludes the proof.



