An Approximate Solution to Consistency Equations

Zihao Hu

zihaohu@sjtu.edu.cn

Abstract

In this report, we propose a technique to approximate a fixed point of consistency mappings deriving from mean field inference. We convert these equations to linear systems by using a linear approximation to sigmoid function, then obtain a closed-form solution. This idea may also be used to solve an approximate solution for other energy functionals, like the Bethe free energy.

Technical Details

Let us consider a Gibbs distribution about $\mathbf{x} \in \{-1, 1\}^{n \times 1}$

$$p(\mathbf{x}) = \frac{1}{Z} \exp\{-\mathcal{E}(\mathbf{x})\},\tag{1}$$

and its fully factorized mean field distribution

$$q(\mathbf{x}|\boldsymbol{\phi}) = \prod_{i}^{n} \phi_{i}^{(x_{i}+1)/2} (1-\phi_{i})^{(1-x_{i})/2}.$$
(2)

The KL-divergence between q and p is

$$\operatorname{KL}(q||p) = \sum_{i}^{n} \phi_{i} \ln \phi_{i} + (1 - \phi_{i}) \ln(1 - \phi_{i}) + \mathbb{E}_{q}[\mathcal{E}] + \ln Z.$$

$$(3)$$

After letting the derivative of ϕ_i be zero, we obtain

$$\phi_i = \sigma(-\frac{\partial \mathbb{E}_q[\mathcal{E}]}{\partial \phi_i}). \tag{4}$$

For a binary random variable x which takes the value 1 with probability ϕ and the value -1 with probability $1 - \phi$, $\mathbb{E}[x] = 1 \times \phi + (-1) \times (1 - \phi) = 2\phi - 1$. Since \mathcal{E} is a polynomial of **x**, Equation 4 usually has the form of

$$\boldsymbol{\phi} = \sigma(\mathbf{A}(2\boldsymbol{\phi} - 1) + \mathbf{b}),\tag{5}$$

where **A** is a real symmetric matrix of $n \times n$ and **b** is a real vector. In addition, we wish to solve $\phi \in [0, 1]^{n \times 1}$ approximately.

We define $\lambda = \max(\sum_{j=1}^{n} |A_{ij}| + |b_i|)/c$, $i = 1, \dots, n$, and solve the scaled problem

$$\boldsymbol{\phi} = \sigma(\lambda^{-1}(\mathbf{A}(2\boldsymbol{\phi} - \mathbf{1}) + \mathbf{b})) \tag{6}$$

to ensure that each term inside the sigmoid is bounded by an interval [-c, c], we compute a linear approximation for the sigmoid function: $\sigma(x) \approx c'x + c''$, where c' and c'' can be determined by minimizing the squared loss:

$$\min_{c_1,c_2} \int_{-c}^{c} (\sigma(x) - c'x - c'')^2 dx.$$
(7)

Since each term inside the sigmoid function in Equation 6 is a linear combination of ϕ , approximating these terms directly may cause considerable error. When **A** is invertible, we apply a linear transformation $\mathbf{v} = \lambda^{-1} \mathbf{A}(2\phi - \mathbf{1})$, that is, $2\phi - \mathbf{1} = \lambda \mathbf{A}^{-1}\mathbf{v}$, to make sure that each term inside the sigmoid function involves one variable in **v**. After the approximation, Equation 6 turns out to be linear equations of **v** as

$$(\lambda \mathbf{A}^{-1} - 2c'\mathbf{I})\mathbf{v} = 2c'\lambda^{-1}\mathbf{b},\tag{8}$$

where since $c'' \equiv 0.5$, it is eliminated automatically. When **A** is singular, we approximate (6) directly, and obtain

$$(\lambda \mathbf{I} - 2c' \mathbf{A})(2\boldsymbol{\phi} - \mathbf{1}) = 2c' \mathbf{b}.$$
(9)

We mainly discuss the case that **A** is invertible, while the case that **A** is singular can be solved similarly. In both cases, we have to inverse $(\lambda \mathbf{I} - 2c' \mathbf{A})$, so we use the following theorem to ensure its invertibility.

Theorem 1. A sufficient condition for the invertibility of $(\lambda \mathbf{I} - 2c' \mathbf{A})$ is that 2c' < 1/c.

Proof. We denote the eigenvalue of **A** with the largest magnitude as λ_m . According to the Gershgorin circle theorem, recall that $\lambda = \max(\sum_{i=1}^{n} |A_{ij}| + |b_i|)/c$, $i \in \{1, \dots, n\}$, we have

$$|\lambda_m| \le \max(\sum_{j=1}^{n} |A_{ij}|) \le \lambda c, \quad i \in \{1, \cdots, n\}.$$

$$(10)$$

If 2c' < 1/c, the eigenvalue of $2c'\mathbf{A}$ with the largest magnitude is less than λ , then $(\lambda \mathbf{I} - 2c'\mathbf{A})$ would be positive definite, which concludes the proof.

Since c' is determined by c, we can figure out that when c < 2.5997, the condition in Theorem 1 holds automatically.

Now according to whether $\mathbf{b} = \mathbf{0}$, (8) has two cases:

• For $\mathbf{b} \neq \mathbf{0}$, this problem has a closed-form solution

$$\mathbf{v} = 2c'\lambda^{-1}(\lambda\mathbf{A}^{-1} - 2c'\mathbf{I})^{-1}\mathbf{b}.$$
(11)

• For $\mathbf{b} = \mathbf{0}$, this linear system does not have non-zero solution, and we find the solution of

$$\min_{\mathbf{v}} \left\| (\lambda \mathbf{A}^{-1} - 2c' \mathbf{I}) \mathbf{v} \right\|_2^2 \tag{12}$$

instead. The solution of the problem is the eigenvector associated with the smallest eigenvalue of the matrix $(\lambda \mathbf{A}^{-1} - 2c' \mathbf{I})^T (\lambda \mathbf{A}^{-1} - 2c' \mathbf{I})$.

After solving **v**, reminding that $\mathbf{v} + \lambda^{-1}\mathbf{b} \triangleq \mathbf{v}' \in [-c, c]$, we first re-normalize \mathbf{v}' by

$$\mathbf{v}' = c \Big(2 \Big(\frac{\mathbf{v}' - \min(\mathbf{v}')}{\max(\mathbf{v}') - \min(\mathbf{v}')} \Big) - 1 \Big), \tag{13}$$

then use $\phi = \sigma(\mathbf{v}')$ to obtain the final ϕ .

Actually, we can reduce the approximation error by scaling the original problem with $\lambda = \max(\sum_{j=1}^{n} |A_{ij}|)/c$, $i = 1, \dots, n$. Now since each term inside the sigmoid is bounded by an interval $[b_i - c, b_i + c]$, we apply a linear approximation: $\sigma(x) \approx c_i x + d_i$, where c_i and d_i is determined by

$$\min_{c_i,d_i} \int_{b_i-c}^{b_i+c} (\sigma(x) - c_i x - d_i)^2 dx,$$
(14)

We denote **C** as a diagonal matrix with the *i*-th diagonal element as c_i , the largest one in c_1, \dots, c_n as c_m , and **d** as a column vector formed by d_i .

Using the approximation, Equation 6 is converted to be linear equations about \mathbf{v}

$$(\lambda \mathbf{A}^{-1} - 2\mathbf{C})\mathbf{v} = 2\lambda^{-1}\mathbf{C}\mathbf{b} + 2\mathbf{d} - \mathbf{1},$$
(15)

which can be solved similarly as before.

We use the following theorem to guarantee the invertibility of $(\lambda \mathbf{I} - 2\mathbf{C}\mathbf{A})$.

Theorem 2. A sufficient condition for the invertibility of $(\lambda \mathbf{I} - 2\mathbf{C}\mathbf{A})$ is that $2|c_m| < 1/c$.

Proof. We denote the eigenvalue of **CA** with the largest magnitude as λ_m^c . According to the Gershgorin circle theorem and $\lambda = \max(\sum_{j=1}^{n} |A_{ij}|)/c$, $i \in \{1, \dots, n\}$, we have

$$\begin{aligned} |\lambda_m^c| &\leq \max(\sum_j^n |c_j A_{ij}|) \leq |c_m| \max(\sum_j^n |A_{ij}|) \\ &\leq \lambda |c_m|c, \quad i \in \{1, \cdots, n\}. \end{aligned}$$
(16)

If $2|c_m| < 1/c$, the eigenvalue of 2CA with the largest magnitude is less than λ , then $(\lambda I - 2CA)$ would be positive definite, which concludes the proof.

Actually, we can prove that $|c_m| \leq c'$ always holds by showing that c_i in Equation 14 achieves maximum when $b_i = 0$. Therefore, the condition in Theorem 1 is also enough. We show the proof as follows.

After taking partial derivatives w.r.t c_i and d_i in Equation 14 and eliminating d_i , we reach

$$c_i \propto c(\ln(1+e^{b_i+c}) + \ln(1+e^{b_i-c})) + \operatorname{Li}_2(-e^{b_i+c}) - \operatorname{Li}_2(-e^{b_i-c}),$$
(17)

where $\operatorname{Li}_{s}(z)$ is the polylogarithm function. Its derivative with respect to b_{i} is

$$f(b_i) = c\sigma(b_i + c) + c\sigma(b_i - c) + \ln(1 + e^{b_i - c}) - \ln(1 + e^{b_i + c}).$$
(18)

We prove $f(b_i)$ is negative in $(0, \infty)$ and positive in $(-\infty, 0)$, so c_i reaches maximum iff $b_i = 0$.

First, we derive $f(b_i)$'s derivative

$$f'(b_i) = \sigma(b_i + c)(c - 1 - c\sigma(b_i + c)) + \sigma(b_i - c)(c + 1 - c\sigma(b_i - c)).$$
(19)

It seems intractable to solve the zero set of the derivative, so we have to bypass the problem. Noticing that $f'(b_i)$ is a quadratic function of both $\sigma(b_i + c)$ and $\sigma(b_i - c)$, we convert the zero set of $f'(b_i)$ to the intersections of two curves

$$f'(b_i) = x(c - 1 - cx) + y(c + 1 - cy) \triangleq g(x, y) = 0$$
⁽²⁰⁾

and

$$\begin{cases} x = \sigma(b_i + c) \\ y = \sigma(b_i - c) \end{cases}$$
(21)

The plot of g(x, y) = 0 is, obviously, a circle. Although the second curve seems complex, we can eliminate the parameter b_i and obtain

$$x(1-y) = e^{2c}(1-x)y, \qquad 0 \le x \le 1, 0 \le y \le 1,$$
(22)

which is actually part of a hyperbola after inspecting its determinant.

Therefore, solving f'(b) = 0 is equivalent to finding the intersections of

$$\begin{cases} (x - \frac{c-1}{2c})^2 + (y - \frac{c+1}{2c})^2 = \frac{c^2+1}{2c^2} \\ x(1-y) = e^{2c}(1-x)y \end{cases}, \quad 0 \le x \le 1, 0 \le y \le 1.$$
(23)

We can verify that the line x + y = 1 is the common symmetry axis of both curves, so we can just discuss the intersections of two curves below the line and double the result. These two curves intersect x + y = 1 with points $\left(\frac{c-1+\sqrt{c^2+1}}{2c}, \frac{c+1-\sqrt{c^2+1}}{2c}\right)$ and $(\sigma(c), \sigma(-c))$, respectively. We can further find out that implicit relations of two curves can be converted to functions $h_1(x)$ and $h_2(x)$ in intervals $[0, \frac{c-1+\sqrt{c^2+1}}{2c}]$ and $[0, \sigma(c)]$, respectively. The point (0, 0) (corresponds to the case that $b \to -\infty$) can be easily verified to be an intersection point of two curves. We use the Bolzano's theorem to prove that there is an intersection point in the interval $(0, \frac{c-1+\sqrt{c^2+1}}{2c}]$. We shall show that $h'_1(0) = \frac{1-c}{1+c} < h'_2(0) = e^{-2c}$ and $h_1(\frac{c-1+\sqrt{c^2+1}}{2c}) = \frac{c+1-\sqrt{c^2+1}}{2c} > h_2(\sigma(c)) = \sigma(-c) > h_2(\frac{c-1+\sqrt{c^2+1}}{2c})$ hold for $\forall c > 0$ by converting these inequalities to equivalent but simpler propositions.

$$\begin{split} e^{-2c} &> \frac{1-c}{1+c} & \frac{c+1-\sqrt{c^2+1}}{2c} > \sigma(-c) \\ \Leftrightarrow e^{-2c}(1+c) > (1-c) & \Leftrightarrow c+1+\sqrt{c^2+1} < 1+e^c \\ \Leftrightarrow (1+c) > e^{-2c}(1-c) & \Leftrightarrow (e^c-c)^2 > c^2+1 \\ \Leftrightarrow e^{2c}(c-1) + (c+1) > 0. & \Leftrightarrow e^{2c} - 2ce^c - 1 > 0. \end{split}$$

We can easily verify that $e^{2c}(c-1) + (c+1) > 0$ and $e^{2c} - 2ce^c - 1 > 0$ hold for $\forall c > 0$. Since $h_1(0) = h_2(0)$ and $h'_1(0) < h'_2(0)$, we can say there exists $\epsilon > 0$ to make $h_1(\epsilon) < h_2(\epsilon)$. Then $h_1(\frac{c-1+\sqrt{c^2+1}}{2c}) > h_2(\frac{c-1+\sqrt{c^2+1}}{2c})$ yields that $h_1(x) = h_2(x)$ has a root in the interval $(\epsilon, \frac{c-1+\sqrt{c^2+1}}{2c})$. We denote the root as t.

These two curves possess at least four intersection points due to the symmetry, but a circle can intersect a hyperbola with at most four points, so the number of intersections is exactly four.

Now, we can reveal the monotonicity of $f(b_i)$ by inspecting relative positions of two curves. Recall that

$$f'(b_i) = x(c - 1 - cx) + y(c + 1 - cy).$$
(24)

Figure 1: The plot of $f(b_i)$ and the intersections of two curves when c = 2.

If a point which lies on the hyperbola is inside the circle, we have $f'(b_i) > 0$, and vice versa. We draw plots of $f(b_i)$ and other two curves for the case c = 2 in Figure 1. Since in the interval (0,t), $h_1(x) < h_2(x)$ and in $(t, \frac{c-1+\sqrt{c^2+1}}{2c}]$, $h_1(x) > h_2(x)$, we know that $f(b_i)$ increases in $(-\infty, \sigma^{-1}(t) - c)$ and $(\sigma^{-1}(1-t) + c, \infty)$, while decreases in $(\sigma^{-1}(t) - c, \sigma^{-1}(1-t) + c)$ using the relation that $x = \sigma(b_i + c)$. Combining the monotonicity with facts that $\lim_{b_i \to \pm \infty} f(b_i) = 0$ and f(0) = 0 concludes the proof.