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Abstract

In this report, we propose a technique to approximate a fixed point of consistency mappings deriving
from mean field inference. We convert these equations to linear systems by using a linear approximation to
sigmoid function, then obtain a closed-form solution. This idea may also be used to solve an approximate
solution for other energy functionals, like the Bethe free energy.

Technical Details

Let us consider a Gibbs distribution about x ∈ {−1, 1}n×1

p(x) =
1

Z
exp{−E(x)}, (1)

and its fully factorized mean field distribution

q(x|φ) =

n∏
i

φ
(xi+1)/2
i (1− φi)(1−xi)/2. (2)

The KL-divergence between q and p is

KL(q||p) =

n∑
i

φi lnφi + (1− φi) ln(1− φi)

+ Eq[E ] + lnZ.

(3)

After letting the derivative of φi be zero, we obtain

φi = σ(−∂Eq[E ]

∂φi
). (4)

For a binary random variable x which takes the value 1 with probability φ and the value −1 with probability
1−φ, E[x] = 1×φ+ (−1)× (1−φ) = 2φ− 1. Since E is a polynomial of x, Equation 4 usually has the form of

φ = σ(A(2φ− 1) + b), (5)

where A is a real symmetric matrix of n× n and b is a real vector. In addition, we wish to solve φ ∈ [0, 1]n×1

approximately.
We define λ = max(

∑n
j |Aij |+ |bi|)/c, i = 1, · · · , n, and solve the scaled problem

φ = σ(λ−1(A(2φ− 1) + b)) (6)

to ensure that each term inside the sigmoid is bounded by an interval [−c, c], we compute a linear approximation
for the sigmoid function: σ(x) ≈ c′x+ c′′, where c′ and c′′ can be determined by minimizing the squared loss:

min
c1,c2

∫ c

−c
(σ(x)− c′x− c′′)2dx. (7)

Since each term inside the sigmoid function in Equation 6 is a linear combination of φ, approximating these terms
directly may cause considerable error. When A is invertible, we apply a linear transformation v = λ−1A(2φ−1),
that is, 2φ − 1 = λA−1v, to make sure that each term inside the sigmoid function involves one variable in v.
After the approximation, Equation 6 turns out to be linear equations of v as

(λA−1 − 2c′I)v = 2c′λ−1b, (8)
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where since c′′ ≡ 0.5, it is eliminated automatically. When A is singular, we approximate (6) directly, and
obtain

(λI− 2c′A)(2φ− 1) = 2c′b. (9)

We mainly discuss the case that A is invertible, while the case that A is singular can be solved similarly. In
both cases, we have to inverse (λI− 2c′A), so we use the following theorem to ensure its invertibility.

Theorem 1. A sufficient condition for the invertibility of (λI− 2c′A) is that 2c′ < 1/c.

Proof. We denote the eigenvalue of A with the largest magnitude as λm. According to the Gershgorin circle
theorem, recall that λ = max(

∑n
j |Aij |+ |bi|)/c, i ∈ {1, · · · , n}, we have

|λm| ≤ max(

n∑
j

|Aij |) ≤ λc, i ∈ {1, · · · , n}. (10)

If 2c′ < 1/c, the eigenvalue of 2c′A with the largest magnitude is less than λ, then (λI−2c′A) would be positive
definite, which concludes the proof.

Since c′ is determined by c, we can figure out that when c < 2.5997, the condition in Theorem 1 holds
automatically.

Now according to whether b = 0, (8) has two cases:

• For b 6= 0, this problem has a closed-form solution

v = 2c′λ−1(λA−1 − 2c′I)−1b. (11)

• For b = 0, this linear system does not have non-zero solution, and we find the solution of

min
v

∥∥(λA−1 − 2c′I)v
∥∥2
2

(12)

instead. The solution of the problem is the eigenvector associated with the smallest eigenvalue of the
matrix (λA−1 − 2c′I)T (λA−1 − 2c′I).

After solving v, reminding that v + λ−1b , v′ ∈ [−c, c], we first re-normalize v′ by

v′ = c
(

2(
v′ −min(v′)

max(v′)−min(v′)
)− 1

)
, (13)

then use φ = σ(v′) to obtain the final φ.
Actually, we can reduce the approximation error by scaling the original problem with λ = max(

∑n
j |Aij |)/c, i =

1, · · · , n. Now since each term inside the sigmoid is bounded by an interval [bi − c, bi + c], we apply a linear
approximation: σ(x) ≈ cix+ di, where ci and di is determined by

min
ci,di

∫ bi+c

bi−c
(σ(x)− cix− di)2dx, (14)

We denote C as a diagonal matrix with the i-th diagonal element as ci, the largest one in c1, · · · , cn as cm, and
d as a column vector formed by di.

Using the approximation, Equation 6 is converted to be linear equations about v

(λA−1 − 2C)v = 2λ−1Cb + 2d− 1, (15)

which can be solved similarly as before.
We use the following theorem to guarantee the invertibility of (λI− 2CA).

Theorem 2. A sufficient condition for the invertibility of (λI− 2CA) is that 2|cm| < 1/c.

Proof. We denote the eigenvalue of CA with the largest magnitude as λcm. According to the Gershgorin circle
theorem and λ = max(

∑n
j |Aij |)/c, i ∈ {1, · · · , n}, we have

|λcm| ≤ max(

n∑
j

|cjAij |) ≤ |cm|max(

n∑
j

|Aij |)

≤ λ|cm|c, i ∈ {1, · · · , n}.

(16)

If 2|cm| < 1/c, the eigenvalue of 2CA with the largest magnitude is less than λ, then (λI − 2CA) would be
positive definite, which concludes the proof.
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Actually, we can prove that |cm| ≤ c′ always holds by showing that ci in Equation 14 achieves maximum
when bi = 0. Therefore, the condition in Theorem 1 is also enough. We show the proof as follows.

After taking partial derivatives w.r.t ci and di in Equation 14 and eliminating di, we reach

ci ∝ c(ln(1 + ebi+c) + ln(1 + ebi−c)) + Li2(−ebi+c)− Li2(−ebi−c), (17)

where Lis(z) is the polylogarithm function. Its derivative with respect to bi is

f(bi) = cσ(bi + c) + cσ(bi − c) + ln(1 + ebi−c)− ln(1 + ebi+c). (18)

We prove f(bi) is negative in (0,∞) and positive in (−∞, 0), so ci reaches maximum iff bi = 0.
First, we derive f(bi)’s derivative

f ′(bi) = σ(bi + c)(c− 1− cσ(bi + c)) + σ(bi − c)(c+ 1− cσ(bi − c)). (19)

It seems intractable to solve the zero set of the derivative, so we have to bypass the problem. Noticing that
f ′(bi) is a quadratic function of both σ(bi +c) and σ(bi−c), we convert the zero set of f ′(bi) to the intersections
of two curves

f ′(bi) = x(c− 1− cx) + y(c+ 1− cy) , g(x, y) = 0 (20)

and {
x = σ(bi + c)

y = σ(bi − c)
. (21)

The plot of g(x, y) = 0 is, obviously, a circle. Although the second curve seems complex, we can eliminate the
parameter bi and obtain

x(1− y) = e2c(1− x)y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (22)

which is actually part of a hyperbola after inspecting its determinant.
Therefore, solving f ′(b) = 0 is equivalent to finding the intersections of{

(x− c−1
2c )2 + (y − c+1

2c )2 = c2+1
2c2

x(1− y) = e2c(1− x)y
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (23)

We can verify that the line x+ y = 1 is the common symmetry axis of both curves, so we can just discuss the
intersections of two curves below the line and double the result. These two curves intersect x+y = 1 with points

( c−1+
√
c2+1

2c , c+1−
√
c2+1

2c ) and (σ(c), σ(−c)), respectively. We can further find out that implicit relations of two

curves can be converted to functions h1(x) and h2(x) in intervals [0, c−1+
√
c2+1

2c ] and [0, σ(c)], respectively. The
point (0, 0) (corresponds to the case that b→ −∞) can be easily verified to be an intersection point of two curves.

We use the Bolzano’s theorem to prove that there is an intersection point in the interval (0, c−1+
√
c2+1

2c ]. We shall

show that h
′

1(0) = 1−c
1+c < h

′

2(0) = e−2c and h1( c−1+
√
c2+1

2c ) = c+1−
√
c2+1

2c > h2(σ(c)) = σ(−c) > h2( c−1+
√
c2+1

2c )
hold for ∀c > 0 by converting these inequalities to equivalent but simpler propositions.

e−2c >
1− c
1 + c

⇔e−2c(1 + c) > (1− c)
⇔(1 + c) > e−2c(1− c)
⇔e2c(c− 1) + (c+ 1) > 0.

c+ 1−
√
c2 + 1

2c
> σ(−c)

⇔c+ 1 +
√
c2 + 1 < 1 + ec

⇔(ec − c)2 > c2 + 1

⇔e2c − 2cec − 1 > 0.

We can easily verify that e2c(c− 1) + (c+ 1) > 0 and e2c− 2cec− 1 > 0 hold for ∀c > 0. Since h1(0) = h2(0)

and h
′

1(0) < h
′

2(0), we can say there exists ε > 0 to make h1(ε) < h2(ε). Then h1( c−1+
√
c2+1

2c ) > h2( c−1+
√
c2+1

2c )

yields that h1(x) = h2(x) has a root in the interval (ε, c−1+
√
c2+1

2c ). We denote the root as t.
These two curves possess at least four intersection points due to the symmetry, but a circle can intersect a

hyperbola with at most four points, so the number of intersections is exactly four.
Now, we can reveal the monotonicity of f(bi) by inspecting relative positions of two curves. Recall that

f ′(bi) = x(c− 1− cx) + y(c+ 1− cy). (24)
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Figure 1: The plot of f(bi) and the intersections of two curves when c = 2.

If a point which lies on the hyperbola is inside the circle, we have f ′(bi) > 0, and vice versa. We draw plots
of f(bi) and other two curves for the case c = 2 in Figure 1. Since in the interval (0, t), h1(x) < h2(x) and in

(t, c−1+
√
c2+1

2c ], h1(x) > h2(x), we know that f(bi) increases in (−∞, σ−1(t)− c) and (σ−1(1− t) + c,∞), while
decreases in (σ−1(t)− c, σ−1(1− t) + c) using the relation that x = σ(bi + c). Combining the monotonicity with
facts that limbi→±∞ f(bi) = 0 and f(0) = 0 concludes the proof.
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